In the Bantu language Kinande, extraction in *wh*-questions and focus constructions triggers the appearance of a morpheme in the complementizer domain that agrees with the extracted element in \(\varphi \)-features (Schneider-Zioga 2009). This phenomenon of *wh*-agreement has often been taken as evidence for successive-cyclic movement, particularly when the *wh*-agreement marker must appear in every clause intervening between the phonological position of the extracted word and its extraction site, as in the case of Irish complementizer agreement. However, Schneider-Zioga (2009) argues that monoclausal *wh*-agreement in Kinande is a reflex of movement, but long-distance displacement is due to resumption, not successive-cyclic movement. This paper pursues this line of inquiry further by providing an account for the distribution of Kinande *wh*-agreement morphology within Tree Adjoining Grammar (TAG) (Frank 2002). Schneider-Zioga (2009) leaves open the question of how the links between these *wh*-agreement markers emerge if they are not the reflex of successive-cyclic movement; these are established straightforwardly in this analysis.

In Kinande simple monoclausal *wh*-questions, the *wh*-agreement morpheme appears high in the clause and agrees in \(\varphi \)-features with the extracted *wh*-word. When a *wh*-word is displaced long-distance (across clause boundaries), *wh*-agreement is obligatory in every clause except the clause containing the gap (clause 3), where it is optional.

(1) Wh-agreement required in 1 and 2, optional in 3

[1] ekihi *(kyo) Kambale asi [2 nga *(kyo) Yosefu akalengekanaya
[3 nga (kyo) Mary’ akahuka ...)]]
if 7.WH 1.Marya 1.cooks

‘What did Kambale know that Yosefu thinks that Mary is cooking (for dinner)?’

The TAG derivation for the 123 pattern (Figure 1) follows Frank’s (2002: 186–187) analysis of Irish in which the agreeing complementizer is the instantiation of a \([u \text{ WH-EPP}]\) feature; uninterpretable \(\varphi \)-features have been added here to allow for noun class agreement between the *wh*-agreement marker and the *wh*-word. During the elementary tree building stage, the *wh*-word moves to SpecCP of clause 3, checking \([u \text{ WH-EPP}]\) and \([u \varphi \overline{T}]\). In the TAG stage of the derivation, the elementary tree for clause 1 adjoins into the root node of clause 2 via feature identification. Finally, the resulting auxiliary tree adjoins into the \(C' \) node of clause 3, stretching the dependency between the *wh*-word and its extraction site and allowing all remaining uninterpretable features to be checked.

The 123 derivation cannot derive the 12 pattern because clause 3’s tree requires a \([u \text{ WH-EPP}]\) \(C \) head in order for the *wh*-word to move to its specifier in the elementary tree building stage. If this tree had a null \(C \) head instead, there could be no \([u \text{ WH-EPP}]\) feature and thus the *wh*-word would have to stay in situ. I adapt Frank’s (2002: 218–227) analysis of long movement to account for this 12 pattern. In the 12 derivation (Figure 2), the *wh*-word and clause 3 without *wh*-agreement form a multicomponent elementary tree set; both components substitute into clause 2. Then the elementary tree for clause 1 adjoins into the higher \(C' \) of the resulting tree, separating the *wh*-word from clause 2 and allowing all remaining uninterpretable features to be checked.

This paper further demonstrates that the feature sets required for Kinande *wh*-agreement morphemes in the above derivations, together with the principle of Greed (Frank 2002: 158), successfully rule out all other distributions of *wh*-agreement morphology.